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A Galerkin Method for a Nonlinear Dirichlet Problem 

By Jim Douglas, Jr. and Todd Dupont 

Abstract. A Galerkin method due to Nitsche for treating the Dirichlet problem for a 
linear second-order elliptic equation is extended to cover the nonlinear equation 

V * (a(x, u)Vu) = f. The asymptotic error estimates are of the same form as in the 
linear case. Newton's method can be used to solve the nonlinear algebraic equations. 

1. Introduction. W-e shall present asymptotic error estimates for a Galerkin 
method for the approximate solution of the nonlinear Dirichlet problem 

-V (a(x, u)Vu) = f(x) on Q, 

u(x) = g(x) on aQz, 
where Q2 is a bounded domain in Rn with n < 3. Assume that Q2 is locally on one side 
of its smooth boundary 3Q, that a(x, u) is a twice continuously differentiable mapping 
of Q2 x R into [aO, a1 ], where 0 <a< a I < 00, ahid that the derivatives of a(x, r) 
through second order are bounded on Q2 x R. As we shall see later, it follows from 
well-known regularity results and a uniqueness theorem of Douglas-Dupont-Serrin [1] 
that if, for some a E (0, 1), f E C(Q2) and if g can be extended to Q2 to be in C +a(f), 
then there exists a unique weak solution u of (1) and, moreover, u E C2+t(2). (The 
class C*+'(F2) consists of all functions whose derivatives through order k are Holder 
continuous of order at on Q.) 

The Galerkin method we shall employ is the straightforward generalization of a 
method of Nitsche [3] to this nonlinear case and the form of the asymptotic error 
estimate produced for this method is essentially the same as in the corresponding linear 
case. The primary tool used in proving these error estimates is the fact that the formal 
derivative, 

(2) Lw - V - (a(x, u)Vw + wau(x, u)Vu), 

of the elliptic operator in (1) is a linear elliptic operator for which the Dirichlet problem 
has a unique solution; this (nonobvious) fact follows from [1]. The nonsingularity of 
the Dirichlet problem for (2) is also used in showing that the nonlinear algebraic equa- 
tions arising in the Galerkin method can be solved by Newton's method provided a 
sufficiently good approximation of the answer can be found with which to begin the 
Newton iteration. 

2. The Approximate Solution. For 1 6 p < oo and k a nonnegative integer, let 
WpC(f2) be the functions in LP(Q) whose distribution derivatives through order k are 
also in LP(&2). Take IlHIWk(n) to be the natural norm on e-(Q): 
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1/p 

k1 = [ kIIDaVMIP(,) 1? 6p <0 

WP (Q) IaIU<k LOO ( J). 

Adopt the following notations: 

IIVI = IIMI L 2 g2) 
vi = IIVII 2 (a IVIk = IIV1IWk(k2) 

Set 

tl = {v C Wl2(): for almost every x C aQ there is an open 
(3) ball B(x) about x such that v C W2f( n B(x)), 

and such that av/av C L2(a2)}, 

where av/av denotes the derivative of v in the direction of the outward normal to M2. 

For each h C (0, 1) define a norm on H by 

111p112 = IIkI 1112 = 11k012 + h-1 10p2 + hlap/avI2. 

We shall consider a family {Mh }<h<j of finite-dimensional subspaces of H 
satisfying the following assumptions: 

(4i) There exists a positive integer r and a constant cl such that, if 2 < s S r + 1 

and v C HS(U), then 

inf {hlllv - Xlllh + h211v - Xl) 1 I} < ChsIIvIIs. 
xev6 

(4ii) For each v C C;(Q), 

inf{Illv- Xlll: X E Mh, supp(X) CC Q} = o(l) 
as h tends to zero. 

(4iii) For all X C Mh, 

lax/avI < c1h-?2xllxll1. 

The assumptions (4i)-(4iii) are satisfied by many finite element spaces that contain 
piecewise polynomials of degree r. The condition (4ii) is satisfied by almost all finite 
element spaces that satisfy (4i) with o(l) replaced by O(hr); thus, it is a very mild 
constraint. Condition (4iii) is an inverse hypothesis on the family. {Mh }O<h< ; together 
with the hypothesis that aQ is smooth, this condition effectively excludes tensor prod- 
ucts of spaces of piecewise polynomials in a single variable. The conditions (4i) and (4iii) 
are needed for the analysis of Nitsche's procedure even in the case in which the operator 
is linear, but the need for condition (4ii) is special to the nonlinear problem. 

Let (, ) and (-,) denote the scalar products on L2(Q) and L2(MQ), respectively. 
For parameters y > 0 and z E L2(Q2) define a bilinear form B on H by 

I av 
B(z; v, w) = (a(z)Vv, Vw) -(a(g) a w 

-(v, a(g) aW _yh-l v, w GE , 
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where we have suppressed the writing of the x argument of a. Note that, if we use 
z v = u, then B reduces to data in the sense that 

(6) B(u; u, w) = (f, w) -g, a(g) aw yh-l w E t. 

The following lemma is an easy consequence of the inverse hypothesis (4iii). 
LEMMA I (NITSCHE). There exist positive constants p and ym, depending only 

on Q,n,cl, o and a,, such that, ify >y0, 

(7) piliviii2 ? B(z; v, v), v E M., z E L2( 2). 

For each y > 0 there exists C2 = C2(y, a1) such that 

(8) IB(z; v, w)I S c2iiiviii Iliwilil v, w C H, z C L2(Q2). 

We shall assume henceforth that y > yo and is fixed; hence c2 is also fixed and 

(7) holds. 
Define an approximate solution uh to be an element of Mh satisfying 

9B(u; u, W) = (f, w)-(g, a(g) aw yh fE M 

To see that there exists at least one solution uh of (9) consider the map S: Mh Mh 
defined by 

(10) B(y; Sy, w) = (f, w) - a(g) av -hw W E 

The condition (7) implies the nonsingularity of the filnite set of linear equations that 
define S, and choosing w Sy in (10) shows that the range of S is contained in a ball. 
Since S is clearly continuous, the Brouwer fixed point theorem implies that (9) has a 
solution. 

3. Convergence Result. Our main result for the procedure given by (9) is the 
following theorem. 

THEOREM 1. Suppose that, for some a C (0, 1), f E C'(Q) and g can be ex- 
tended to be in C2 + ̀ (Q). Suppose also that u E W2(S2) for some s satisfying 2 6 s < 

r + 1. Then there exists a constant c3 such that for h sufficiently small 

(11l) ilu - uhII + hillu - UhIII < c3hS. 

Proof Because of the finite dimensionality of the Mh's the infimum in (4i) is 
actually assumed; let X CE Mh be such that Illu - Xlil + hllu - XIIwi(Q) is minimal. Note 
that (7), (9) and (5) imply that 

piiu h - X1112 < B(uh; Uh - XI Uh - X) 

= B(u; u - X, uh - x) + ((a(u) - a(uh))VX, V(Uh - X)) 

< (C2111U - xiii + lla(u) - a(uj)i L3 ()llXiiW1(n))iiiuh 
- xilli 

Thus, by (4i) and the choice of X, 

(12) ||uh -ulll <u C[hs1 + lia(u) - a(uh)Ii 3l 
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Using the fact that a is uniformly Lipschitz continuous with respect to u and the inter- 
polation result (since dim(Q) S 3) 

(13) N0L:So < C% 
? I I210111, 

we see that 

(14) |||uh - ulll < C[hs1 + ilu - uII]. 

In order to bound Ilu - uhhI we use a duality argument. Note that it follows 
directly from well-known elliptic regularity and Theorem 2 of [1] that any Dirichlet 
problem for the linear elliptic operator L defined in (2) has at most one weak solution 
in Wl(2). It then follows that for any ? E L2(Q) there exists a unique ,p E W2e 
such that 

(15) L*p=p onQ, (p =O on M, 

where L* is the formal adjoint of L: 

L*w = - V - (a(x, u)Vw) + au(x, u)Vu * Vw. 

Also there exists a constant C independent of ? such that 

(16) 1101h2 < C1I1iI. 

Take ? = u - uh in (15). A short computation shows that 

(17) hI?I2 - (t, L*p) = B(u; u, (p) - B(uh; U, p) UV - aU2Vu, Vp), 

where 

au(x) = S au(x, u(x) - t?(x))dt, 

auu(x) = J (I - t)auu(x, u(x) - t?(x))dt. 

With X E Mh appropriately chosen we see from (17), (6), (9), (8), Holder's inequality, 
the Sobolev imbedding theorem and (4i) (in that order) that 

g112 h (;U -)BU; Uh' f0 X) + (taWV 
- 
aU" VU,V< 

= B(uh; *, 9p - X) + (ta%Vu, V(p - X)) ? (V - aXu2 Vu, V,o) 

? C11h111 11ko - xIl + C1I1I1L3(g2)IRIhID I(I 1 (2) 

S C1Ijjij [h + 1II1 IL3()] P11012. 

Thus (16) and (13) imply that 

11~11 ? C1hijj [h + 111L 3 (2) I < C[1IIrjjIh + jhIjjjI3/2hIjjh1/2] 

Hence, 

(18) 11IiI < C[IhIihIh + IgIii113] 

Using (14) in (18), we see that for h sufficiently small 

(19) 116I + hllltlll < C[hs + ilt1131. 



A GALERKIN METHOD 693 

The inequality (19) proves the theorem provided we can show that II0iI 0 as 
h -k 0; this is done via a compactness argument. From (12) and the fact that la(x, z)I 
6 cl for (x, z) E fQ x R we see that there is a constant independent of h such that 
1llu - ulll < C. Hence 

(20) luh - gI 6 Ch 2 

and 

(21) IIuhIIl 6 C + lIull. 

From (21) we see that from any sequence of h's tending to zero we can choose a sub- 

sequence {hk}kil such that for some w E W (E2), Uhk w in L2(Q) and weakly in 
Wi2). It follows from (20) and the trace inequality 

1ep1 6 CIIep111/211ep111/2, <>E W Q 
that 
(22) w =g onaQ. 

We want to show that w = u by showing that w is a weak solution of (1). Take v E 

Co;(Q) and Vhk E Mhk such that VIk has compact support in Q and 

llv - Vll =o(l) askk oo. 

Then 

I(a(w)Vw, Vv) - (f, v)l = I(a(w)Vw, V(v - v1k)) 

+ (a(w)Vw - a(uhk)Vuhk, Vvhk) (f, (v - vhk)) 

S Cliv - vhkIll + I(a(w)Vw - a(uhk)VUk, VV)I. 

Rewriting the last term as 

(a(w)V(w - uhk ), Vv) + ((a(w) - a(uhk))Vuh, Vv) 

and using the convergence of Uhk to w, we see that 

(23) (a(w)Vw, Vv) = (f, v), v E Co(Q). 

Thus we see from (22) and (23) that w is a weak solution in Wl(&2) of (1). Assume for 
the moment that such weak solutions are unique. Then w = u, and it follows by a 
standard argument that u- u in L2(,Q) as h O 0. Hence, lI0iI 0 as h 0, and 
the conclusion (11) follows from (19). 

To show that weak solutions of (1) are unique we shall first use a "boot-strap" 
argument to see that weak solutions are smooth solutions and then apply the results of 
[1]. Suppose that w E W2(E2) satisfies (22) and (23). Then by results of de Giorgi 
and Nash (see [2, Theorem 5.3.7]) w is in fact Holder continuous on QZ. (We always 
choose the smooth element of the equivalence class in Wl(E2) if there is one.) It then 
follows from a result of Morrey (see [2, Theorem 5.5.4] ) that w E Wlp(Q2) for 1 < p < 
om; in particular, w E Wl(E2). This then implies that w E W2 (), since w is a weak - 

solution of 
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(24) -- Ap = (I/a)(Va(p)) * Vp + f on Q, 

p=g on aU. 

Finally we can apply the Schauder estimates (see [2, Theorem 5.6.3]) to see that w E 
C2+ (f2). Thus, weak solutions of (1) are in fact classical solutions of (1) and belong 
to C2 (Q2); therefore, Theorem 1 of [1] implies that these solutions are unique. This 
completes the proof of Theorem 1. 

4. Newton's Method. Using an additional hypothesis on the function spaces M., 
we shall find conditions under which Newton's method can be used to compute the 
solutions u. of the nonlinear algebraic equations (9). 

For z E L2(Q) define a bilinear form N(z; , ) on H by 

(25) N(z; v, w) = B(z; v, w) + D(z; v, w), 

where B is defined in (5) and 

(26) D(z; v, w) = (au(z)vVz, Vw). 

Given zo E Mh,the Newton approximations to uh form a sequence {Zk}k0= in Mh 
satisfying 

(27) N(Zk; Zk+l ZkI V) =f(f V)(g a(g) av -h v)-hB(zk; Zk, V) V EE Mh. 

For each Mh let 

(28) ah = sup{IIvI L (2)/IIvIIj: 0 # v E Mh}. 

We shall assume throughout this section that uh converges to u sufficiently rapidly that 

(29) I|u UhIIL0oo() + ohIr U UhI 1 0 as h O. 

In addition, we shall assume that there is a constant c4 independent of h, such that 

(30) Wuhil() < c4; 

in many cases this can be verified by using Theorem 1 together with approximation and 
inverse assumptions which are slightly stronger than those made in (4). 

Our main result for Newton's method is the following. 
THEOREM 2. There exist positive constants ho, 6 and c5 such that, if O < h S 

ho and ah IIzo - Uh 1I 1S 6, then {Zk }kI 0 exists and Vk = IIIZk - Uh III is a decreasing 
sequence satisfying 

(*) Vk+1 S cScJhIIzk ~~~uhk1 h SCJhVk. 

The proof of Theorem 2 relies heavily on the following lemma. 
LEMMA 2. Given r > 0, there exist positive constants 6, ho and c6 such that the 

following holds. If 0 < h S ho0 if z E Wl (2) satisfies 

lZlw 1 ? (Q) S T and lIz - ulIlr, S 6, 

and if G is a linear functional on H with norm IIIGIII, then there exists a unique v E Mh 
satisfring the equations 
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(31) N(z; v, w) = G(w), w e Mh. 

Furthermore, v satisfies the bound 

(32) lilyv!ll C6i1iGIII. 

Proof. It suffices to show that (32) holds, since it implies that solutions of (31) 
are unique and hence exist. 

From Lemma 1 it follows that 

PI!v!112 < B(z; v, v) = G(v) - D(z; v, v) 

< [IIGII + IIau(z)Vz!!LO() llvll] llyV!!l. 

Hence, 

(33) lily!!! S C[IIIGIII + llvlv] 

Let L* be as in (15), and let ep satisfy 

L* =v on Q, =O on M. 
Then, for X E M,, 

Iv = N(u; v, p) 

(34)~ ~ {N(Z; V, fo - X) + G(fp + (X - <p))} + [N(u; v, <p) - N(z; V, <0)] 

Using (4i) and the bound !k11!2 < Cliv!l, we see that 

(35) {- } < C(hIIIvIII + I!GI!)IIvII. 
A short computation shows that 

[ * * I < Cllu- zll L (n) llvll 1 koll + aIl L 00(n) Iu-zl1N 

(36) S C(IIu - uhI? + ah (iiU -Uh l ? + huh -zll ))iivII i llvi. 

Thus (34), (35) and (36) imply that 

(37) liv!l < CIIIGIII + Fillvly, 
where 

F = C(h + Ilu - uh L() + ah(iiu - Uhlll + h1uh - Z111)). 

From (33) and (37) it follows that 

(38) (1 - CF)iIviIv S CIIIGIII. 

If ho and 6 are taken sufficiently small that CF < 1/2, then (38) implies (32). This 
completes the proof of the lemma. 

Proof of Theorem 2. First we show that, if ho and 6 are sufficiently small, if 
O < h h0, and if oh Ilzk - uh!! ?6 , then there exists a unique Zk+ 1 - It suffices to 
show that, if v E Mh satisfies 

N(zk; v, w) = O, W E Mh, 

then v 0. To see this, note that 

v,h VsW) = G(w), w E 
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where 

G(w) = ([a(uh) - a(zk) Vv, Vw) + ([(a(uh) - a(zk))VUh - a(Zk)V(zk - uh)J v Vw). 

It is easily checked that IlIGIII S Co.htluh - ZkIl IIVIIl. Hence, by Lemma 2, lilvIll < 

c6ChIIuh ZkIll IIIVIII; thus, v-0 if c6Ca < 1. 
To verify (*), note that 

N(Uh;Zk+l -Ul W) N(Uh; Zk Ut, W) +N(Zk;Zk+l Zk, W) 

+ [N(uh; Zk+ 1 Z Zk, W)-N(Zk;Zk+ 1 Zk, W)] 

(39) - {N(uh; Zk - uh, w) + B(uh; Uh, w) -B(Zk; Zk, W)} 

+ [N(uh; Zk+l Zk W) N(Zk; Zk+l -Zk, W) 

= G,(w) + G2(w) = G(w), w G mh, 

where the braces and brackets indicate the decomposition of G into G1 and G2. Since 

1 (W) = (014uu(Zk 
- Uh) VUh + 'U(Zk - Uh)V(Uh - Zk), VW), 

where a?Z and au are certain averages of auu and au, respectively, it follows that 

(40) 1 1 IG1 S ? ChhllZk - UhII2 < Crhvk2 
Similarly, since 

G2(W) = ([a(Uh) - a(Zk) V(Zk+ 1 Zk), VW) 

+ ([(au(uh) - au(Zk))VUh + au(Zk)V(Uh - Zk)I(Zk+1 Zk), VW), 

we see that 

(41) 11IG2111 < COh IZk - UhIIl(IIzk UhIIl + IlZk+1 - UhlIl) 

6 CahVk(Vk + Vk + 1 ) 

The conclusion, (*), then follows from Lemma 2, (39), (40), and (41). 
In the cases where Mlh is obtained from piecewise polynomial functions over a 

quasi-regular triangulation of Q, one can show that 

oh - ln hI1, n=2, or r ;t h-l/2, n = 3. 
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